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Fig. 1: Overview of our approach. We train a diffusion-based generative model on SE(3) scenes generated by procedural
models, then adapt it to downstream objectives via reinforcement learning-based post training, conditional generation, or
inference-time search. The resulting scenes are physically feasible and fully interactable. We demonstrate teleoperated
interaction in a subset of generated scenes using a mobile KUKA iiwa robot.

Abstract— Training robots in simulation requires diverse 3D
scenes that reflect the specific challenges of downstream tasks.
However, scenes that satisfy strict task requirements, such as
high-clutter environments with plausible spatial arrangement,
are rare and costly to curate manually. Instead, we generate
large-scale scene data using procedural models that approxi-
mate realistic environments for robotic manipulation, and adapt
it to task-specific goals. We do this by training a unified
diffusion-based generative model that predicts which objects to
place from a fixed asset library, along with their SE(3) poses.
This model serves as a flexible scene prior that can be adapted
using reinforcement learning-based post training, conditional
generation, or inference-time search, steering generation toward
downstream objectives even when they differ from the original
data distribution. Our method enables goal-directed scene
synthesis that respects physical feasibility and scales across
scene types. We introduce a novel MCTS-based inference-
time search strategy for diffusion models, enforce feasibility
via projection and simulation, and release a dataset of over
44 million SE(3) scenes spanning five diverse environments.
Website with videos, code, data, and model weights: https:
//steerable-scene-generation.github.io/

I. INTRODUCTION

Robots increasingly rely on data-intensive learning meth-
ods, making simulation a promising strategy for scalable
training and evaluation [I]-[5]. As robotics shifts toward
foundation models, it is encouraging that the demand for
large and diverse training datasets will only increase [6]-[8].
However, acquiring scenes that meaningfully challenge robot
capabilities or reflect human teleoperator preferences remains
difficult, as such scenes are rare, expensive to curate, and
task-specific. For example, a robot may need to operate in
highly cluttered environments or interact with specific object
categories. Instead of manually authoring such scenes, we
propose training a unified generative model on large-scale
procedurally generated data and adapting it to downstream
objectives using reinforcement learning-based post training,
conditional generation, and inference-time search.

Recent work has advanced automatic scene creation at both
the object [9], [10] and scene level [11], [12]. We focus on
the latter, where the task is to select objects from a fixed
library and place them at continuous SE(3) poses. Classical
approaches to scene synthesis rely on procedural modeling,
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"A scene with a floor, four tables,
four shelves, 16 chairs, three cans,
a nintendo game, a bread slice, two

board games, and some other
objects."

Fig. 2: Text-conditioned scene generation. A model trained on the Restaurant (High-Clutter) dataset is queried with the
shown text prompt. The generated scene matches both the large-scale layout and fine-grained object details.

where object relationships are encoded as rule sets or gram-
mars [13]-[19]. Recent works incorporate priors from large
language models (LLMs) or vision-language models (VLMs)
[20]-[23]. Others aim to extract 3D scenes directly from 2D
images [24]-[26], moving toward generating large-scale 3D
datasets from internet-scale image corpora. A separate line of
work trains generative models that learn object relationships
directly from scene data, without relying on handcrafted rules
or LLMs [I1], [27]-[31]. These models typically operate
in SE(2), assuming floor-aligned layouts composed of large
furniture items. We combine the strengths of both directions
by treating procedural and image-to-3D pipelines as data
sources for training a generative scene model. Rather than
using these pipelines at inference time, we distill their output
into a flexible prior that can be adapted to downstream tasks.
Our framework is agnostic to the (object ID, SE(3) pose) data
source and can be augmented with real-world scenes when
available.

Prior generative models often represent scenes as floor-
aligned SE(2) layouts and focus on static furniture arrange-
ments [27]-[31]. In contrast, we target cluttered SE(3) scenes
composed of small, manipulable objects relevant to robotic
manipulation. Many such scenes require vertical translation
(e.g., placing an object on a shelf) and full 3D rotation (e.g.,
standing cutlery in a utensil crock), which SE(2) cannot
represent. These manipulation-ready settings demand phys-
ically feasible placements, including non-penetration and
static equilibrium. PhyScene [ 1] encourages such feasibility
through classifier-based guidance, but may still produce in-
valid samples. In contrast, we guarantee physical correctness
via a nonlinear programming projection and simulation.

In practice, the distribution of available training data often
does not reflect downstream objectives, such as maximiz-
ing robot performance or aligning with human preferences.

While diffusion models are typically trained to maximize
likelihood under the training distribution, this is insufficient
when the data does not cover task-relevant domains. We
study three complementary strategies for steering a pre-
trained scene model toward downstream goals. First, we
adopt reinforcement learning-based post training, which has
been applied in NLP and vision to optimize for user pref-
erences [32]-[35], but remains unexplored for scene gen-
eration. Second, we explore conditional generation, widely
used in SE(2) scene models, in the SE(3) setting. Third,
we introduce an inference-time Monte Carlo Tree Search
(MCTS) procedure over partial scenes. Together, these tools
enable goal-directed scene generation beyond the support of
the original training distribution.

We evaluate our generative model pipeline on five scene
types ranging from tabletop to room-scale environments,
compare against SE(2)-based baselines extended to SE(3),
and show that the generated scenes can be used directly
for robot data generation. We demonstrate post training and
inference-time search using physical feasibility and high-
clutter objectives relevant to robotics [36].

Summary of contributions. Our main contribution is show-
ing that a scene generative model trained on broad procedural
data can be steered toward task-specific objectives, such as
increasing clutter. Specifically: (1) we demonstrate how this
can be achieved through reinforcement learning-based post
training, conditional generation, and a novel MCTS-based
inference-time search strategy for diffusion models; (2) we
release our code, data, and model weights; and (3) we present
a dataset comprising over 44 million unique SE(3) scenes
spanning five distinct scene types, each featuring numerous
small, movable objects. Individual scenes include up to 125
objects, supporting diverse and complex interaction scenarios
relevant to robotic tasks, and providing a valuable benchmark
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Fig. 3: RL post training with an object count reward. We post-train a model originally trained on the Living Room
Shelf dataset. Left: Sample before post training. Middle: Sample after post training. Right: Reward curve. The red line marks
the maximum number of objects seen during pre-training (23). Before post training, we increase the maximum number of
objects allowed by the scene representation by 20 to enable higher object counts. The green line indicates the checkpoint
used for sampling (step 7000), chosen to avoid overoptimization.

for future work on SE(3) scene generation.

II. SE(3) SCENE GENERATION AND STEERING

We learn a generative model over scenes, where each
object is selected from a known library and placed at a
continuous SE(3) pose. Our method begins with data from
a procedural generator (Section II-A), trains a diffusion
model (Section II-B), and applies post processing to ensure
physical feasibility (Section II-C). To steer the pretrained
model toward downstream goals, we explore reinforcement
learning post training, conditional generation, and inference-
time search (Section II-D).

A. Data Generation

We train on procedurally generated scenes, but our method
is agnostic to the scene generator and supports any source
that outputs (object, pose) tuples. This includes future proce-
dural pipelines as well as real-world scene data. While large-
scale real-world SE(3) datasets remain scarce, building them
from internet-scale image or video corpora is a promising
direction [24]-[26]. In this work, we use a single procedural
model [16] to generate training data. Distilling that data into
a generative model yields a compact, unified, and differ-
entiable scene prior that enables post training, conditional
generation, and inference-time search—capabilities not eas-
ily supported by procedural systems. We provide additional
data generation details in the appendix.

B. SE(3) Scene Diffusion

Scene Representation. We represent a scene as an un-
ordered object set X = {o; | i € {1,...,N}}, where N
is an upper bound on the number of objects [30]. Each
object o; consists of an SE(3) pose, parameterized by a
translation p € R? and a rotation, represented as a 9D vector
R € R While this rotation representation is used during
training and diffusion, we project it onto SO(3) at sample
time as in [37]. Each object also includes a one-hot vector

c € {ve{0,1}°|> v =1}, indexing a specific object
asset from a fixed library S of C' assets. Following [30],
we include an empty object in S to support variable-sized
scenes. Our generative model learns distributions over such
object sets .

Training Objective. We adopt the mixed discrete-continuous
diffusion framework from [31]. Specifically, we apply con-
tinuous diffusion [38] to p and R and discrete diffusion [39]
to ¢, conditioning each on the other during generation.
Model Architecture. Since we represent scenes as object
sets X, the denoising model f should be object-order
equivariant [30]: for any permutation o(-), it should satisfy
f(o(X)) = o(f(X)) [40]. Standard Transformers satisfy
this property when positional encodings are omitted [41]. We
adopt the Flux architecture [42], using its image branch with-
out positional encodings to preserve equivariance. Flux offers
efficient training and strong performance across domains
such as images and music [42], [43]. For mixed diffusion,
we add input/output MLP projections following [31].

C. Physical Feasibility Post Processing

Even when trained on feasible data, generative models
may produce SE(3) scenes that violate physical constraints,
such as non-penetration or static equilibrium. These issues
often arise from small numerical errors, e.g., due to mixed
precision or slight misalignments. To enforce physical fea-
sibility, we first resolve inter-object collisions by projecting
object translations to the nearest collision-free configuration
while keeping orientations fixed to help preserve static equi-
librium (see the appendix for details). We then simulate the
scene in Drake [44], allowing unstable objects to settle under
gravity. While projection removes penetrations, simulation
corrects unstable configurations, ensuring scenes are phys-
ically plausible and ready for downstream use. We apply
simulation only after projection, as deep penetrations can
cause large contact forces under rigid-body models, leading
to explosive behavior.
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Fig. 4: Our MCTS inference-time search. The root node is fully masked (blue), and child nodes represent partially inpainted
scenes (blue-green). The rollout node is highlighted with a red halo.

D. Steering Scene Generative Models

A key capability of scene generative models is their
potential for steering generation toward downstream goals,
even beyond the training distribution. We explore three
complementary strategies: reinforcement learning-based post
training (Section II-D.1), conditional generation (Section II-
D.2), and inference-time search (Section II-D.3). We provide
additional details for these in the appendix.

1) Post Training with Reinforcement Learning: Distilling
scene datasets into a differentiable model enables reinforce-
ment learning (RL)-based post training. We adopt DDPO
[34] to fine-tune a continuous DDPM-based scene model [38]
using task-specific rewards and apply the regularization from
[35] to stabilize training. We use object count (clutter) as a
downstream reward to test whether RL-based post training
can adapt the model beyond the training distribution. To
enable compatibility with existing fine-tuning methods, we
use a fully continuous diffusion model, representing object
categories and poses as continuous variables as in [30]. Our
aim is not to propose a new RL algorithm but to demonstrate
the feasibility and utility of post training for scene models.

2) Conditional Generation: Learned generative models
support flexible conditioning, unlike most procedural systems
[16]-[18]. Our models can be conditioned on language,
partial scenes, or other modalities. We explore two strategies:
(1) conditional training and (2) test-time inpainting using an
unconditional model.

Text-conditioned generation. We encode prompts using
BERT [45] and inject the resulting embeddings into the
conditional branch of our Flux-based architecture. To enable
a single model to support both conditional and unconditional
generation, we randomly mask the conditioning information
during training. This allows us to apply classifier-free guid-
ance (CFG) [46] at inference time by interpolating between
the conditional and unconditional outputs. Our prompts are
procedurally generated and can describe object counts, object
identities, or spatial relationships between objects.

Scene completion and re-arrangement. We perform in-
painting directly in the structured scene representation. Given
a binary inpainting mask indicating which parts of the scene
to synthesize, we generate missing content while clamping
the rest to their fixed values during the reverse diffusion
process [47]. For example, we can rearrange scenes by
regenerating the continuous poses while keeping the object
categories fixed. For scene completion, we synthesize both
categories and poses for empty objects. This enables consis-

tent, plausible generation from partial inputs.

3) Inference-Time Search via MCTS: Generative scene
models can be steered toward downstream objectives at
inference time. We demonstrate this via a Monte Carlo
Tree Search (MCTS) procedure that incrementally constructs
a scene through conditional inpainting. At each step, an
inpainting mask identifies which objects to regenerate, such
as unstable ones or empty slots, and a reward function
evaluates the resulting scene. As a running example, we con-
sider the objective of maximizing the number of physically
feasible objects, i.e., objects that are non-penetrating and in
static equilibrium. Each node in the MCTS tree represents
a partially completed scene and a corresponding inpainting
mask.

The search proceeds through the standard MCTS phases [48]
(shown in Figure 4):

(a) Selection. We traverse the tree from root to leaf, selecting
at each step the child with the highest UCT [49] value:

UCT(j) = 7j + ¢ /21 rmeml)
reward of child j, npaenc(j) and n; are the visit counts of
parent and child, and c is an exploration constant.
(b) Expansion. At a leaf, we sample B completions, where
B is the branching factor, by inpainting the masked objects
with different noise initializations. Each resulting scene is
evaluated to identify remaining invalid or incomplete objects,
producing a new inpainting mask (e.g., flagging newly unsta-
ble or empty objects). These (scene, mask) pairs form new
child nodes.
(c) Rollout. One of the new children is selected randomly
and scored using a task-specific reward, in our example,
the number of physically feasible objects. Since each node
corresponds to a complete scene (when discarding masked
objects), rollout in our setting reduces to directly reading the
reward, rather than “rolling out” to a terminal state.
(d) Backpropagation. The reward is propagated up the tree,
updating average reward estimates and visit counts along the
way.

We run the search for a fixed number of iterations or until
a scene with no masked objects is found. If no such fully
valid scene is produced, we return the best partial scene
encountered, discarding any objects that remain masked.

Controlling the Objective. Our framework adapts to
diverse downstream goals through two modular components:
the mask generator, which determines which objects to
inpaint, and the reward function, which evaluates scene
quality. These components can be defined independently. For

, Where 7; is the average



Fig. 5: Scene rearrangement example. A scene from the Restaurant (Low-Clutter) dataset is rearranged via inpainting by a
model trained on the same dataset. Red, green, and blue ellipses highlight corresponding objects. Notably, cutlery is moved
from the utensil crock to the table, requiring full SO(3) rotation modeling.

example, one might mask all physically invalid or empty
objects, but optimize for a more targeted, yet aligned reward,
such as the number of edible objects or the degree of prompt
alignment. This decoupling enables flexible and modular
search strategies across various downstream objectives.

Connection to Prior Work. When the branching fac-
tor B = oo, our method reduces to Random Search
from ma2025inferencetimescalingdiffusionmodels, repeat-
edly sampling new scenes without building on previous ones.

III. EXPERIMENTAL EVALUATION
A. Evaluation Setup

Metrics. We evaluate generative quality using image-
based metrics adapted to SE(3) scenes. Following prior work
on SE(2) scenes [27], [28], [30], [31], we compute Fréchet
Inception Distance (FID) and classifier accuracy (CA, in %)
based on semantic renderings. A CA near 50% indicates
realistic generation, while a CA near 100% indicates clear
separability. We render each scene from a manually defined
informative viewpoint specific to the scene type. We also
report KL divergence between object category distributions,
prompt-following accuracy (APF) for count and object-type
prompts, and median total penetration (MTP) to assess
physical feasibility. MTP is computed before applying our
post processing. Full metric definitions are provided in the
appendix.

Baselines. We compare our proposed approach against two
state-of-the-art diffusion-based scene synthesis methods: (1)
DiffuScene [30], which uses a 1D U-Net with a continuous
DDPM objective, and (2) MiDiffusion [31], a Transformer-
based model that employs a mixed discrete-continuous dif-
fusion objective. We apply minimal modifications to both
implementations to support our scene representation X. For
MiDiffusion, we replace floor plan conditioning with text
conditioning. All models, including ours, use the same BERT
text encoder [45].

Datasets. As described in Section II-A, we generate our
training data using the procedural scene generation frame-
work from [16]. We reuse the Dimsum Table scene type from
[16] and define four additional scene types: Breakfast Table,
Living Room Shelf, Pantry Shelf, and Restaurant. Restau-
rant is a room-level composition that integrates Dimsum
Table and Living Room Shelf scenes along with additional
objects. For greater diversity, we split the Breakfast Table

and Restaurant scenes into low- and high-clutter variants,
reflecting the procedural generation parameters used. In total,
we sample more than 44 million SE(3) scenes across all
scene types, significantly surpassing the scale of prior SE(2)
scene datasets, such as 3D-FRONT [50], which contains
18,968 scenes. The supplementary provides the full set of
quantitative and qualitative results across all datasets.

B. Unconditional Generation

We report unconditional generation results for the Restau-
rant (High-Clutter) and Living Room Shelf datasets in Ta-
ble I; additional results, including samples from a single
model jointly trained across all datasets, are provided in
the appendix. Rather than training separate unconditional
models, we use our text-conditioned models by providing
empty conditioning inputs at sampling time. Our model
achieves strong FID and significantly lower MTP compared
to baselines, indicating that it produces scenes that are both
visually realistic and physically plausible. Classifier accuracy
(CA) closer to 50% further supports that our samples are
harder to distinguish from dataset scenes. While we do
not always achieve the lowest KL divergence, all methods
obtain very low KL values on our datasets. Since KL is near
saturation, the differences are minor, and this metric is less
informative in our setting; therefore, we report it primarily
for completeness, following prior work.

C. Post Training with Reinforcement Learning

We apply reinforcement learning (RL) post training to a
model trained on the Living Room Shelf dataset, using an
object count reward. Figure 3 shows the reward curve and
sample scenes before and after post training. We choose a
checkpoint before overoptimization occurs to maintain scene
quality. Additional results are provided in the appendix.
RL-based post training successfully adapts the pretrained
model to generate scenes with object counts substantially
exceeding those observed during pretraining. By expanding
the maximum object capacity in the scene representation
before post training, we enable the model to extrapolate
beyond its original range without requiring retraining from
scratch. This demonstrates that post training can effectively
shift and reshape scene distributions toward task-specific
goals.



TABLE I: Unconditional generation results on the Restaurant (High-Clutter) and Living Room Shelf datasets. * indicates
that we adjusted the methods for compatibility with our scene representation.

Restaurant (High-Clutter Variant)

Living Room Shelf

Method

CA(50it, %) | KL (x10% | FID| MTP(@m)| CA (100it, %), KL (x10%) ] FID] MTP (cm) ]
DiffuScene* [30] 84.81 + 6.49 0.55 1.39 18.11 71.73 £ 0.99 4.67 2.18 0.05
MiDiffusion* [31] 78.63 = 9.79 1.01 1.34 8.80 64.13 + 1.87 2.51 2.09 0.03
Ours 70.74 £ 8.05 0.87 1.31 6.31 52.84 + 1.26 2.13 2.09 0.02

TABLE II: Conditional generation results on the Breakfast Table (High-Clutter) and Pantry Shelf datasets. * indicates that
we adjusted the methods for compatibility with our scene representation.

Breakfast Table (High-Clutter Variant)

Pantry Shelf

Method

CA(501it, %) ] KL (x10% ] FID] APFft CA0it, %) | KL (x10% | FID| APF?¢
DiffuScene* [30] 82.38 + 3.82 0.96 1.87 0.76 84.65 + 2.23 0.91 1.93 0.88
MiDiffusion* [31] 82.22 + 3.11 0.58 1.93 0.60 87.24 + 1.80 0.64 1.89 0.72
Ours 68.44 * 4.67 0.30 1.84 0.86 82.78 + 3.44 0.66 1.88 0.98

"A scene with an avocado, a

stacking ring, five apples, two
cans, and some other objects."

"A scene with an avocado, a board

game, and some other objects."

Fig. 6: Interpolation between Living Room and Pantry Shelf Scenes. We train a joint model on both datasets with a
50/50 batch mix. By prompting for objects unique to each dataset (red = Living Room Shelf, blue = Pantry Shelf), we guide

the model to generate interpolated scenes.

D. Conditional Generation

We report quantitative results for text-conditioned gen-

eration on the Breakfast Table (High-Clutter) and Pantry
Shelf datasets in Table II. Figure 2 shows examples of
text-conditioned generation, and Figure 5 illustrates scene
rearrangement via partial inpainting. Additional results, in-
cluding scene completion, are provided in the appendix.
Our model outperforms baselines in CA, FID, and APF,
indicating stronger prompt adherence and overall generation
quality. Qualitative examples further show that our model
captures both large-scale layouts and fine-grained object
details.
Cotraining across scene types. We also investigate whether
cotraining on the Living Room Shelf and Pantry Shelf
datasets enables interpolation. During training, we use equal
batch mixing ratios across sub-datasets. As shown in Fig-
ure 6, prompting the model with mixed object descriptions
from both environments leads to interpolated scenes that
combine elements of each dataset, demonstrating that the
model captures a meaningful joint distribution.

E. Inference-Time Search

Figure 7 shows how MCTS optimizes the number of phys-
ically feasible objects in a Dimsum scene with a branching

factor B = 3. The training set had a mean of 17.1 objects and
a maximum of 34; MCTS reaches this maximum, demon-
strating that inference-time search can push scene complexity
well beyond typical training-time levels. Scene distributions
encode local structure, for example, steamers often appear in
vertical stacks. Our results show that the model captures such
patterns: MCTS incrementally builds realistic, physically
feasible stacks by exploiting inductive biases learned during
pretraining, without requiring retraining.

IV. CONCLUSION

We presented a diffusion-based framework for SE(3) scene
generation that distills large-scale procedural data into a
flexible, physically grounded prior. Our model predicts object
categories from a fixed asset library and continuous poses,
and supports adaptation via RL-based post training, condi-
tional generation, and inference-time search. Experiments
across five scene types show that the pretrained model
enables strong unconditional and conditional generation,
that post training improves targeted metrics such as clutter,
and that MCTS search can optimize task rewards without
retraining. To qualitatively validate simulation readiness, we
imported generated scenes into the Drake simulator and
successfully teleoperated a mobile KUKA iiwa robot to per-
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Fig. 7: Inference-time search with MCTS. We apply MCTS at inference time to generate a Dimsum scene that maximizes
the number of physically feasible objects. Left: Initial sample and final result after search. Red, green, and blue ellipses
highlight corresponding objects. Note how the search completes the steamer stacks. Right: Reward curve. Inpainting the
fully masked scene (equivalent to unconditional sampling) yields 21 feasible objects in the best of B = 3 samples. MCTS
reaches the maximum possible 34 objects after 313 iterations, with reward rising quickly, then plateauing.

form pick-and-place interactions without requiring manual
scene corrections (see Figure 1 and supplementary videos).
Together, these results demonstrate that a single model can
flexibly adapt scene distributions without handcrafted tuning
or retraining. Our work highlights a scalable approach to
robotic scene generation: pretraining on broad data sources,
then steering toward task-specific goals.

V. LIMITATIONS

While our method demonstrates the feasibility and benefits
of steering scene generative models toward downstream
objectives, several limitations remain. First, although pro-
cedural data provides scalable supervision, it may not fully
capture the complexity and variability of real-world environ-
ments. Incorporating real-world SE(3) datasets, potentially
extracted from internet-scale image or video corpora, remains
an important direction for enhancing realism. Second, we
adopt fully continuous diffusion models to enable rein-
forcement learning-based post training, rather than our full
mixed discrete-continuous models. We leave applying post
training to mixed discrete-continuous settings as future work.
Additionally, we observe that when post training pushes
object count close to the maximum allowed by the scene
representation, overoptimization can occur: samples exhibit
many objects but no longer resemble the original data distri-
bution. While expanding the maximum object capacity helps,
fully continuous models still struggle to maintain quality
when handling many additional object tokens, limiting the
effectiveness of this strategy. Third, our object representation
uses a fixed asset library with one-hot encodings, reflecting
a practical design choice aligned with robotics workflows,
which often depend on pre-validated simulation assets to
ensure high-quality geometry and physical properties for
realistic simulations. While this limits generalization to novel
geometries without retraining, it enables precise control over
the asset set, and our steering methods remain compatible
with alternative object representations. Fourth, while our

object library currently consists of rigid bodies, it natu-
rally extends to articulated objects (e.g., drawers, cabinets)
without requiring changes to the method. We leave the
exploration of articulated scenes for future work. Fifth, our
adaptation strategies—post training, conditional generation,
and inference-time search—are proof-of-concept demonstra-
tions. Future work could explore more sophisticated reward
functions, conditioning schemes, and search objectives tai-
lored to specific robot tasks. Finally, while we demonstrate
simulation-readiness via teleoperation, scaling to large-scale
autonomous robot training across generated scenes is an
important direction for future work.
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