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Abstract— Current autonomous driving technologies are
resource-intensive in their development, and deploying them
on public streets remains technologically challenging and fi-
nancially unsustainable, contributing to the economic strain
in Germany’s and Europe’s automotive sector [1]. Large
Multimodal Foundation Models (LMFM) are emerging as a
framework to tackle challenges in robotics due to their ad-
vanced context understanding and capturing causalities across
different modalities being trained on various tasks. Fine-tuning
LMFMs for specific tasks or domains, such as autonomous
driving, promises higher performance. However, despite their
potential, current state-of-the-art methods struggle to master
the complexities of the driving task. They are often resource-
intensive and sample-inefficient, lagging behind the efficiency
and effectiveness of human learning processes. In this research,
we propose a novel approach to mimic human-level learning
for driving, by introducing a high-level multi-task fine-tuning
curriculum that divides the driving task into four phases,
mirroring the structured progression found in human driving
school curricula. Our approach will gradually enhance task
complexity while reducing the reliance on expert guidance.
Being successful in this approach, we will deliver an end-to-end
autonomous driving system capable of mapless navigation while
adhering to Road Traffic Regulations (StVO). To increase the
reasoning and decision-making capabilities of our base LMFM
and bridge the gap between simulation and real-world driving,
we introduce a novel continuous fine-tuning technique termed
online Iterative Reinforcement Driving Learning from Driving
Instructor Feedback/Suggestion (RDL-DIF). Leveraging our
extensive experience in autonomous vehicle algorithm devel-
opment across public roads [2][3][4] and racing environments
[5][6][7], we aim to achieve a significant 92x reduction in the
time required to master the real-world driving task, while
simultaneously cutting resource requirements by at least 96x
compared to existing state-of-the-art approaches. By streamlin-
ing resource demands, we seek to pioneer the next generation
of autonomous vehicle software, making scalable and profitable
autonomous vehicle systems a reality.

I. INTRODUCTION

In late September 2024, our institute demonstrated an
autonomous passenger vehicle, EDGAR (see Fig. 1), as a
shuttle service between Theresienwiese and Munich Main
Station during Oktoberfest [3][4][2]. This challenging de-
ployment required navigating around large crowds, includ-
ing intoxicated pedestrians, showcasing our algorithm’s ro-
bustness. The project involved three professors and around
25 PhDs actively over 2.5 years. Built on the Autoware
open-source stack [8], this solution, though advanced, is
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Fig. 1. TUM research platform (EDGAR) operating as an autonomous
shuttle service during Oktoberfest [3].

highly specific to the route, limited in speed, and lacks
full scalability for diverse environments. Despite these high
investments, even industry leaders like Alphabet-backed
Waymo, with 2,500 employees, can only operate in se-
lected urban areas [9]. These classic modular software ar-
chitectures [10][11][12][13][14][15][16] come with inher-
ent complexities, consuming substantial time and resources
during development. The emergence of Large Multimodal
Foundation Models (LMFMs) presents a promising alterna-
tive, leveraging effective world-model prediction capabilities
[17][18][19][20]. Recent work has introduced GAIA-1, the
first generative world model tailored for self-driving systems
[21]. Despite its potential, this approach demands extensive
training time, utilizing around 4,700 hours of driving data
from Microsoft-backed Wayve’s UK corpus (385 employees)
and exclusively relying on cameras, omitting lidars and
radars. In contrast, human learning typically requires only
14 theory units (each lasting 90 minutes) and 30 hours of
practical driving—a total of 51 hours, making it 92 times
faster than Wayve’s approach. In this research, we propose
a highly time-efficient methodology to attain human-level
driving proficiency, requiring 96 times fewer resources than
Wayve.

This research delivers an autonomous driving learning
framework (RDL-DIF) and an end-to-end trained LMFM
model that:

• Accelerates learning by 92x, drastically reducing the
time needed to master driving tasks compared to state-
of-the-art methods,

• Achieves human-level proficiency in robotic task
learning, matching human standards in both perfor-
mance quality and learning efficiency,

• Offers a streamlined alternative to modular au-



(I) Theory

Learn rules from Road 
Traffic Regulations, 
theoretical scene 
understanding and 
discrete reasoning for 
decision making.

(II) Simulation

Learn technical 
navigation skills with a 
vehicle in simulation 
through continuous 
reasoning.

(III) Real-world: Pass 
the driving test

Learn to drive on public 
roads across diverse 
driving tasks and 
environments: urban, 
highway and parking, 
daylight and night, full 
braking maneuvers …

(IV) Become an 
expert driver

Continuous learning and 
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inexperienced 
environments based on 
real-world experience.
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(RDL-DIF).
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without DIF and a 
learned reward model.

• The learned safety 
filter model is 
activated.

T
a
s
k

L
e
a
rn

in
g

Fig. 2. Learning the driving task through a fine-tuning curriculum split into four distinct subtasks.

tonomous driving (AD) software stacks, reducing the
time, cost, and complexity typically associated with AD
development.

Further sub-goals are:
• Online sample-efficient fine-tuning based on real-time

DIF feedback in voice form and continuous unsuper-
vised learning on our research vehicle EDGAR [22]
(Fig.1).

• Enhanced Safety: rule-aware learning and a deployed
predicitve safety filter.

• Exploration of real-time capabilities of LMFMs on our
research vehicle EDGAR [22] (Fig.1).

II. METHODOLOGY

To address the identified challenges and meet our objec-
tives, we propose a high-level multi-task learning curriculum
(Fig. 2). This approach breaks down the learning-to-
drive task into four distinct subtasks/phases, mirroring
the structured progression of a human-driving school
curriculum. Our goal is to enhance and facilitate the agent’s
learning experience by gradually increasing task complexity
while reducing the level of expert guidance. Our starting
point is an already trained LMFL with a general under-
standing of a world model, and we will expand its scene
understanding, reasoning, and decision-making capabilities
for the driving task on public streets through fine-tuning
for specific tasks according to the learning curriculum (Fig.
2). Experiments will be carried out on our research vehicle
EDGAR [22].

In phase (I), our model initially learns theoretical driv-
ing rules (StVO) through supervised fine-tuning, utilizing a
predefined scene understanding catalog of questions.

In phase (II), we leverage a sophisticated simulation
environment to learn technical navigation skills, guided by
Driving Instructor Feedback/Suggestion (DIF) in voice form.
We introduce a novel fine-tuning concept termed online iter-
ative RDL-DIF, illustrated in Figure 3. This phase includes

the iterative update of the Reward Model (RM) based on DIF
and a Predictive Safety Filter Model incorporating DIF and
simulation penalties (rp,sim), such as those for crashes. The
safety filter dynamically monitors the RL policy operation
and can intervene by switching to a fallback safety policy to
prevent failures.

In phase (III), the agent transitions to driving on public
roads guided by DIF in a voice form and Driving Instructor
Intervention (DII) in form of steering, brake and acceleration
interventions. We push our agent to bridge the sim-2-real gap
through continuous online iterative RDL-DIF fine-tuning of
the RDL policy, RM-DIF model, and Safety Filter Model.
Simulation penalties (rp,sim) are no longer available, replaced
by DII penalties (rp,DII).

In phase (IV), after the agent passes the practical driving
license test, it starts collecting experience without DIF. Now,
we apply the trained Safety Filter Model instead. The agent
autonomously improves its driving skills in new inexperi-
enced environments through continuous RL training without
DIF. In this phase, RM-DIF (rDIF) and penalties (rp) are not
applicable. Our novel online iterative RDL-DIF approach
distinguishes itself from current SOTA Reinforcement
Learning from Human Feedback (RLHF) [23] in several
key aspects: (1) our reward model is trained in tandem with
the fine-tuned policy during operation, eliminating the need
for resource-intensive offline pretraining, (2) is based real-
time voice feedback and action suggestions from humans,
offering a more convenient and interactive approach, (3) our
reward structure adapts dynamically to the learning phase, (4)
we enhance safety of the fine-tuned output through an online-
trained safety model, (5) our approach handels multimodal
inputs.
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tian Huber, Maximilian Hübner, et al. Edgar: An autonomous driving
research platform–from feature development to real-world application.
arXiv preprint arXiv:2309.15492, 2023.

[23] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane
Legg, and Dario Amodei. Deep reinforcement learning from human
preferences. Advances in neural information processing systems, 30,
2017.


	Introduction
	Methodology
	References

