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Fig. 1: Overview of SCENEWEAVER, a reflective agentic framework built on standardized and extensible tool interfaces that unifies the
strengths of existing scene synthesis methods to produce visually realistic, physically plausible, instruction-aligned 3D scenes.

Abstract—Indoor scene synthesis has become increasingly
important with the rise of Embodied Al, which requires 3D
environments that are not only visually realistic but also
physically plausible and functionally diverse. While recent
approaches have advanced visual fidelity, they often remain
constrained to fixed scene categories, lack sufficient object-
level detail and physical consistency, and struggle to align
with complex user instructions. In this work, we present
SCENEWEAVER, a reflective agentic framework that unifies
diverse scene synthesis paradigms through tool-based iterative
refinement. At its core, SCENEWEAVER employs a language
model-based planner to select from a suite of extensible scene
generation tools, ranging from data-driven generative models to
visual- and LLM-based methods, guided by self-evaluation of
physical plausibility, visual realism, and semantic alignment
with user input. This closed-loop reason-act-reflect design
enables the agent to identify semantic inconsistencies, invoke
targeted tools, and update the environment over successive
iterations. Extensive experiments on both common and open-
vocabulary room types demonstrate that SCENEWEAVER not
only outperforms prior methods on physical, visual, and semantic
metrics, but also generalizes effectively to complex scenes with
diverse instructions, marking a step toward general-purpose 3D
environment generation.

I. INTRODUCTION

3D scene synthesis [21], [25], [29], [27], [34], [31], [2],
[24], [7], [30], [10] has been a long-standing research topic in
computer vision and graphics, primarily focused on generating

visually realistic 3D environments for applications such
as interior design, virtual content creation, and gaming
asset creation. With the recent rise of embodied artificial
intelligence (EAI), the scope of scene synthesis has naturally
expanded to accommodate new functional demands [6], [13],
[29]. Beyond achieving visual realism, scenes are now
expected to be physically interactable within simulators
and precisely controllable in response to task-specific user
instructions, particularly in constructing tailored environments
for training and evaluating embodied agents. These extended
requirements pose significant new challenges for 3D scene
synthesis.

Despite rapid progress, existing methods fall short of holis-
tically addressing the requirements for realistic, controllable,
and physically plausible scene synthesis, as summarized
in Tab. 1. Rule-based systems [6], [22] ensure physical
validity through hand-crafted constraints, but lack extensibility
across diverse scene types and offer limited controllability
due to their rigid, manually defined logic. Data-driven
generative learning methods [20], [25], [29], while more
flexible, are constrained by the scarcity of high-quality, scene-
level 3D datasets (e.g., 3D-Front [8]). As a result, they
typically produce visually realistic scenes within pre-defined
categories but generalize poorly to novel scene types or layout
instructions. Methods based on Large Language Models
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(LLMs) approaches [2], [24], [7], [30], [10] offer stronger
open-vocabulary understanding and semantic flexibility, yet
often struggle with spatial reasoning and 3D awareness,
resulting in physically implausible rearrangements. Collec-
tively, these limitations highlight that no single approach is
sufficient to meet the combined demands of realism, physical
plausibility, and controllability. This motivates the need for
a comprehensive and adaptable scene synthesis framework
capable of synthesizing high-quality 3D scenes.

Inspired by recent advances in LLM-based agents, which
demonstrate strong reasoning and planning capabilities in
complex tasks, recent works in 3D scene synthesis have
begun to move beyond monolithic approaches by decompos-
ing the generation process into sequential compositions of
modular synthesis components, forming multi-step pipelines
coordinated by LLMs. A common strategy starts with
generating coarse, scene-level layouts through interaction
with LLMs [30], [24], [7], [2], followed by progressive
refinement using pre-trained 2D generative models or Multi-
modal LLMs (MLLMs) for asset generation [26], [35], object
placement [33], [4], [16], and texture inpainting [10], [3].
While these pipelines leverage both the specialization of
individual models and the semantic flexibility of MLLMs,
they remain largely “static”, i.e., their planning and execution
are governed by fixed prompts and hard-coded module
invocation logic over a limited set of synthesis tools. This
design overlooks the potential to couple reasoning with
adaptive decision-making based on generation feedback, and
the ability to seamlessly integrate diverse synthesis tools
through a unified interface. As a result, these systems fall short
of enabling self-refining and extensible agents, leaving the
full potential of multi-modal foundation models underutilized.

To address the aforementioned challenges, we propose
SCENEWEAVER, a reflective agentic framework that enables
MLLMs to synthesize 3D scenes in a self-refining manner
through a set of easily extensible tool interfaces. Specifically,
SCENEWEAVER consists of two core components: 1) a
standardized and extensible tool interface that abstracts diverse
scene synthesis methods into modular tools operating at differ-
ent levels of generation granularity; 2) a self-reflective planner
that dynamically selects tools and iteratively refines the scene
by reasoning over feedback from previous generations, while
applying the planned modifications and enforcing physical
plausibility with a physics-aware executor. This framework
enables closed-loop, feedback-driven scene evolution, where
the agent identifies areas for improvement, invokes appropriate
tools, and updates the scene under physical constraints.
Extensive experiments show that SCENEWEAVER achieves
new state-of-the-art across a broad range of scene types and
open-vocabulary instructions, demonstrating strong visual
realism, physical plausibility, and precision in instruction
following. We also provide ablation studies showing that
the self-refining design is critical to achieving high-quality
scene synthesis and that integrating diverse tools leads to
significant performance improvement compared to monolithic
approaches. In summary, our contributions are as follows:

« We propose SCENEWEAVER, the first reflective agentic

framework for 3D scene synthesis, enabling MLLMs to
iteratively refine scenes through feedback-driven planning
with modular tools.

« SCENEWEAVER introduces a comprehensive reason-act-
reflect paradigm that formalizes the planner’s decision
making, reflection, and action protocols, along with a
standardized and extensible tool interface for synergizing
diverse scene synthesis methods based on their respective
strengths.

« Extensive experiments on open-vocabulary scene synthesis
demonstrate that SCENEWEAVER outperforms existing
methods in both visual realism, physical plausibility,
and instruction following. We also provide meticulously
designed ablation studies to highlight the effectiveness of
the proposed reflective agentic framework.

II. RELATED WORK

a) 3D Indoor Scene Synthesis: 3D indoor scene synthe-
sis is typically formulated as a layout prediction task, where
objects are represented by 3D bounding boxes and semantic
labels [8], [20], [24]. Data-driven generative models [20],
[25], [29], trained on datasets like 3D-FRONT [8], learns
realistic but coarse scene layouts, constrained by the limited
variety and level of detail of scenes in the dataset. To
address this limitation, recent work leverages language and
2D foundation models to provide missing priors on scene
types and fine-grained details. LLM-based methods [2], [24],
[7], [30], [10] combine textual prompts with rule-based
systems [6], [22] to generate diverse scenes, but often suffer
from hallucinations and the poor spatial reasoning capability
of LLMs. Meanwhile, methods based on 2D foundation
models improve scene detail and spatial coherence through
image-conditioned generation [26], [35] or real-to-sim conver-
sions [4], [33]. However, they remain limited by the capability
of image generation models and challenges in 2D-to-3D
lifting, exhibiting semantic or physical inconsistencies under
complex scene generation instructions. Overall, no existing
paradigm sufficiently balances realism, physical plausibility,
and controllability. To this end, we propose SCENEWEAVER,
a unified and extensible self-reflective agentic framework that
integrates the complementary strengths of existing approaches
for high-quality 3D scene synthesis.

b) Spatial Reasoning of MLLMs: Recent works have
explored using the reasoning and generative abilities of
MLLMs for 3D scene synthesis. To address their limita-
tions in spatial reasoning, these methods often incorporate
structured constraints and external logic to enhance physical
plausibility. Some approaches apply rule-based constraints as
post-processing to correct implausible object placements [30],
while others adopt multi-agent or role-based decomposi-
tion to reduce hallucinations and improve coherence [2].
Additionally, efforts have been made to guide generation
through scene-aware tools, such as programmatic layout
representations [24] or geometric reasoning modules [12].
Although these systems MLLMs with reasoning chains and
post-optimization mechanisms, they typically rely on fixed
toolsets and predefined constraints, limiting their flexibility



TABLE I: Comparison of different scene synthesis methods. A single approach is not sufficient to meet the combined demands of
realism, physical plausibility, and controllability, which motivates the need for a comprehensive and adaptable scene synthesis framework.

. Physical Small  Open #Room Large .
Previous Work Plaus.  Object Vocab. Type Real Accurate Scale CAD Source  Developing Platform Method
ATISS [20] X -
DiffuScene [25] X X X 3 v X v 3D FUTURE - Model-based
PhyScene [29] v -
Infinigen [22] v 5+ Generated Blender
Procthor [6] v v X 4 X Y Y RoboTHOR AI2-THOR Rule-based
MetaScene [33] v v v 30+ v X X Mixed -
ACDC [4] v v v Unlimited v X v Behavior OmniGibson Vision-based
Architect [26] v v v Unlimited v X v Mixed -
LayoutGPT [7] X X 3D FUTURE -
Holodeck [30] v v Mixed AI2-THOR
AnyHome [10] X X v Unlimited v X v Generated - LLM-based
I-Design [2] v X Objaverse -
LayoutVLM [24] v X Objaverse -
SCENEWEAVER v v v Unlimited v v v Mixed Blender / IsaacSim Unified

and extensibility. In contrast, SCENEWEAVER isdesigned
to support a diverse and extensible set of tools through
a standardized interface, enabling dynamic tool selection
and composition via a reflective planning mechanism for
reasoning-driven 3D scene synthesis.

¢) LLM-based Agentic Framework: A growing body
of work leverages LLMs as autonomous agents for complex
tasks across domains such as scientific discovery [1], clinical
decision-making [23], and visual reasoning [11]. As LLMs’
reasoning capabilities gradually advance, the focus has shifted
from narrow task-specific agents to general-purpose agentic
frameworks [28], [14], [19], [15] that coordinate multiple
specialized tools to solve complex problems collaboratively.
Recent work [18] has demonstrated that the extensibility and
planning capabilities of LLMs, i.e., the ability to flexibly
integrate diverse tools and coordinate them effectively, are
crucial for solving complex reasoning tasks and lead to
significant performance gains. However, these insights on
agent development remain largely underexplored in the
context of 3D tasks. Motivated by its relevance to 3D
scene synthesis, SCENEWEAVER draws on advances in LLM-
based agentic frameworks and adopts the OpenManus [15]
platform to implement an agentic framework, with a particular
emphasis on extensibility of tools and the reason-act-react
paradigm for 3D scene synthesis.

ITII. THE SCENEWEAVER FRAMEWORK

In this section, we present the design of SCENEWEAVER,
an agentic framework that enables LLMs to perform feedback-
guided, self-reflective 3D scene synthesis using a diverse set
of scene synthesis tools. The SCENEWEAVER framework com-
prises two key components: 1) a standardized tool interface
that organizes the majority of existing scene synthesis methods
into modular tools categorized by their synthesis granularity
(Sec. 1II-A); 2) a self-reflective planner that dynamically
selects tools, iteratively refines the scene based on feedback,
and performs physics-based optimization to enhance physical
plausibility. An overview of SCENEWEAVER is provided in
Fig. 2.

Before describing each component, we formalize the overall
problem setup. Given a user query ¢ € Q and a tool set
D = {d;}_,, SCENEWEAVER aims to synthesize a 3D scene
st through T iterative refinement steps. Each scene state s;
is represented by both 3D layout information and also 2D
renderings from selected camera views (as illustrated in Sec. I-
A). At each step ¢ € [1,...,T], the self-reflective planner
receives a reflection v;_; including quantitative scores and
explanatory justifications assessing the quality and instruction
alignment of the previous scene s;_;. Based on this feedback,
the planner selects a tool d; € D to refine, and the physics-
aware executor applies the refinement and performs physical
optimization to produce the updated scene s;. A new reflection
v, 1s then computed for s;, and the process repeats.

A. Standardized Scene Synthesis Tool Interface

a) Tool Catalog: As summarized in Tab. I, existing
3D scene synthesis methods vary widely in their design and
focus. To leverage their complementary strengths within a
unified framework, we introduce a standardized tool interface
that abstracts each method as a modular synthesis tool. These
tools are categorized according to their synthesis granularity:
o Scene Initializer: This class of tools generates full-scene

layouts and serves as the starting point for synthesis.

We categorize initializers into three types: 1) data-driven

generative models [20], [25], [29], which offer scalable

generation learned from human-designed indoor scene
datasets but are limited to pre-defined scene types; 2) real-
to-sim methods [4], [33] that create digital twins or cousins
of realistic scenes, providing detailed high-quality scenes

but with limited diversity and scale; 3) LLM-based [7],

[30], [24], [2] that enable open-vocabulary and flexible

generation from natural language, but often exhibit semantic

or physical inconsistencies due to limited spatial reasoning.
o Microscene Implementer: This class of tools adds micro
scene details (e.g., small objects placed on desks or shelves)
that are often missing from whole-scene synthesis methods.

We consider two types of implementers: 1) LLM-based

tools that generate microscene layouts conditioned on
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Fig. 2: The SCENEWEAVER pipeline. Following a reason—act-reflect paradigm, SCENEWEAVER iteratively refines scenes by integrating

the strengths of diverse scene synthesis tools.

local context (e.g., placing a keyboard and monitor on
a desk), offering semantic diversity but prone to spatial
placement errors (e.g., misaligned or backward-facing
objects); and 2) 2D-guided tools [26], [4], which synthesize
reference images of microscene regions using pre-trained
2D generators, then mapping corresponding 3D assets to
the predicted layout. While still constrained by the spatial
reasoning capability of 2D models, the 2D-guided tools
enhances visual realism and relative spatial coherence
between objects.

o Detail Refiner: While previous tools synthesize scenes at
various granularities, they often introduce errors such as
object misplacement or implausible configurations. Refiner
tools address these issues by enforcing constraints and
refining object poses. First, we extend on rule-based scene
synthesis methods [6], [22] and use LLMs to convert
user queries into relational constraints that guide object
placement. Second, to compensate for layout generators
that neglect object orientation and scale, we incorporate
dedicated tools to refine objects’ full 6D pose (location,
rotation, scale). Finally, an LLM-based remover identifies
and eliminates semantically incorrect or severely misplaced
objects.

b) Standardized Tool Cards: To ensure flexible in-
tegration of new tools into SCENEWEAVER, we define
standardized tool cards that guide the planner in deciding
when and how to invoke each synthesis method based on their
specialized strengths. Examples are shown in Fig. 3. Each
tool card contains mandatory fields, including tool description,
applicable scenarios, usage constraints, and required input
parameters. We also inc lude example usage and tool-specific
strengths to help the planner select the most appropriate tool
based on user queries or iterative feedback. For initializer
tools, supported room types are listed to reflect model-
specific limitations and enable the agent to infer room

types from queries when evaluating tool applicability. This
modular design ensures seamless integration, extension, and
replacement of scene synthesis methods without modifying
the overall agentic framework.

B. Feedback-driven Self-reflective Planning

a) Reflection Generation:  To support self-reflective
planning in SCENEWEAVER, we first define the process for
generating self-evaluated feedback over synthesized scenes.
Specifically, given a generated scene s;, we invoke an MLLM
(e.g., GPT-4) to produce a reflection v; comprising two
components: 1) physical metrics, including collision scores,
room boundary violations, and object count and diversity; and
2) perceptual metrics, including visual realism, functionality,
layout coherence, alignment with the user query, and scene
completeness. In addition to scalar scores, the MLLM
generates natural language justifications and improvement
suggestions as input to the planner. This feedback forms a
core reasoning signal for the planner in the subsequent step,
enabling it to assess tool effectiveness and adapt its strategy
accordingly. If the feedback indicates abnormal degradation
(e.g., sharp drops in quality or constraint violations), the
planner can roll back and replan the current step.

b) Self-reflective Planning: Given the user query
g, a tool set D, and memory of previously selected
tools, generated scenes, and reflection feedback my
(dt—1:4—1, St—1:t—1, Vt—1:t—1), where [ determines the length
of memory, the planner in SCENEWEAVER determines the
most appropriate refinement action. Leveraging context-
aware function-calling capabilities in LLMs, the planner
first summarizes the current context (i.e., memory) and
identifies the most critical problem to address at step ¢. It
then ranks candidate tools by suitability and confidence,
selects the most promising tool d; € D, and generates
tool-specific instructions (e.g., "populate empty tables with
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Fig. 3: A visualization of standardized tool interfaces and the reflective planning process. The self-reflective planner leverages diverse
tools to first correct the misoriented laundry machine and then enhance scene details by adding small objects to the shelf (right).

contextually relevant objects"). Tool confidence scores are
dynamically adjusted based on past performance, i.e., failures
reduces confidence, and repeated failures trigger replanning
by reprioritizing refinement targets and selecting alternative
tools. Our self-reflective planner is built on the OpenManus
platform [15], following the ReAct-style [32] reasoning and
planning pipeline. We provide illustrative examples in Fig. 3
and more detailed prompts in Sec. I-B.

¢) Physics-aware Execution of Plans:  Since most
tools described in Sec. III-A operate on 3D bounding box
layouts, a physics-aware executor is required to replace these
drafts with concrete 3D assets and enable both physical post-
optimization and accurate evaluation of physical metrics. To
this end, we build our executor on top of Infinigen [22] and
Blender. At each iteration ¢, the executor loads the previous
scene and the layout modifications proposed by tool d;, then
retrieves and replaces object instances with 3D meshes from a
collected asset pool combining Objaverse [5], 3D-Future [9],
Inifinigen [22], efc., depending on the tool. To ensure spatial
consistency with relationships or constraints generated by
detail refiner tools, the executor also adjusts object placements
to satisfy relational constraints (e.g., aligning chairs to face
desks) produced by the detail refiner. It then performs a
fixed number of physics-based optimization steps to resolve
collisions and boundary violations. We provide additional
implementation details in Sec. I-C.

IV. EXPERIMENT

In our experiments, we aim to answer the following
questions: Q1: How does SCENEWEAVER perform compared
to existing data-driven and open-vocabulary scene synthesis
methods? Q2: How does the reflective agentic framework
behave during the iterative scene refinement? Q3: How

effective is each module in SCENEWEAVER, and how critical
are they to overall performance?

a) Settings: We quantitatively evaluate SCENEWEAVER
against existing methods under two primary settings: 1)
common room types, where large-scale human-designed
datasets support direct data-driven learning, and 2) open-
vocabulary scene generation, following [24], which evaluates
generation across diverse room type descriptions. In the
common setting, models are evaluated based on the average
score over 10 scenes each for the living room and bedroom
categories. In the open-vocabulary setting, evaluation is based
on the average score over 3 scenes for each of 8 room types,
using the prompt “Design me a <room_type>" as the
user query. We also include a setting with complex queries
to assess SCENEWEAVER’s fine-grained controllability over
scene generation, with details provided in Sec. IV-C. For
all settings, we set the maximum number of iterations in
SCENEWEAVER to 10. The memory length is set to 1 to avoid
hallucination. We provide additional experimental details
in Sec. II.

b) Baselines:  For the common settings, we compare
with data-driven scene synthesis models including ATISS [20],
DiffuScene [25], and PhyScene [29]. For these three methods,
we train the model over the 3D-Front [8] dataset following the
conventional learning evaluation schemes. We also compare
with state-of-the-art open-vocabulary 3D scene synthesis
methods including LayoutGPT [7], Holodeck [30], and I-
Design [2] on both the common and the open-vocabulary
setting. As LayoutGPT was originally limited to bedrooms
and living rooms, we adapt it to open-vocabulary room types
by modifying its prompts and constraints. To evaluate the
final scene quality, we retrieve assets from Objaverse [5]
using OpenShape [17] text embeddings following [2].



TABLE II: Quantitative comparison on common room types between SCENEWEAVER and existing scene synthesis methods. For
LLM-based methods, we use “Design me a <room_type>" as the user query.

Bedroom Living Room
Method Physcis Visual & Semantics Physcis Visual & Semantics
#0b3j T #0B | #CN | Real. 1 Func. 1 Lay.t Comp. T #0bj 1T #0B | #CN | Real. 1 Funtc. 1 Lay.T Comp. T

ATISS [20] 39 0.5 0.6 74 7.1 6.6 4.2 7.8 0.1 0.7 5.8 53 6.4 3.7
DiffuScene [25] 35 0.1 1.1 6.5 7.0 6.7 3.6 6.9 0.5 1.2 55 4.9 52 35
PhyScene [29] 33 0.1 0.3 5.7 6.3 5.7 4.0 8.0 0.0 0.7 52 53 5.1 33
LayoutGPT [7] 54 1.0 1.3 7.5 8.1 6.7 4.2 8.4 1.1 2.8 6.4 5.8 52 3.6
Holodeck [30] 32.2 0.0 0.0 8.6 9.1 7.8 6.2 23.0 0.0 53 8.9 9.3 7.6 8.1
I-Design [2] 9.6 0.0 0.0 8.6 9.3 7.6 6.1 9.7 0.0 0.0 8.4 8.9 7.7 5.9
Ours 14.0 0.0 0.0 9.2 9.8 84 94 17.3 0.0 0.0 9.1 9.5 8.0 8.7

TABLE III: Quantitative comparison on open-vocabulary generation between SCENEWEAVER and existing methods. We report the
average score across 8 scene types to evaluate overall model performance.

Bathroom Children Room Gym

Method
#0bj #0B #CN Real.  Func. Lay. Comp. #0bj #0B #CN Real. Func. Lay.  Comp. #0bj #0B #CN Real. Func. Lay.  Comp.
LayoutGPT 7.7 13 10 83 93 7.7 6.0 73 10 07 63 80 60 40 67 07 00 67 67 57 37
Holodeck 120 00 17 77 67 70 53 137 00 20 75 75 65 55 203 00 53 97 93 67 60
I-Design 97 00 00 74 72 74 54 113 00 00 78 83 68 55 120 00 08 82 84 70 52
Ours 197 00 00 90 100 80 90 230 00 00 90 100 83 83 297 0.0 00 9.0 100 80 73

Meeting Room Office Restaurant

Method
#0bj #0B #CN Real. Func. Lay. Comp. #0bj #0B #CN Real. Func. Lay.  Comp. #0bj #0B #CN Real. Func. Lay. Comp.
LayoutGPT 73 1.0 07 40 3.0 53 20 73 03 00 67 77 63 40 70 03 1.7 33 23 47 20
Holodeck 270 00 03 90 100 80 70 270 00 47 70 63 43 40 350 00 123 53 43 43 37
I-Design 187 53 00 60 45 58 43 117 00 00 80 90 68 54 277 00 00 62 52 52 40
Ours 310 00 00 90 90 77 80 400 00 00 90 100 80 87 8.0 00 00 73 7.0 65 73

Waiting Room Kitchen Average

Method
#0bj #0B #CN Real.  Func. Lay. Comp. #0bj #0B #CN Real. Func. Lay.  Comp. #0bj #0B #CN Real. Func. Lay.  Comp.
LayoutGPT 63 00 03 67 57 60 4.0 77 13 13 57 63 47 37 73 07 07 60 61 58 37
Holodeck 240 00 37 83 93 67 57 200 00 13 73 63 63 43 223 00 39 77 175 62 52
I-Design 107 00 00 66 64 58 42 1.7 00 00 65 68 53 35 143 07 01 71 70 62 47
Ours 257 00 00 90 100 80 77 347 00 00 90 93 73 77 365 00 00 88 94 77 8.0

¢) Metrics:  For all quantitative evaluations, we evaluate
models using physical, visual, and semantic metrics follow-
ing [29], [2]. For physical evaluation, we report the average
number of objects in the scene (#0b7), out-of-boundary
objects (#0B), and collided object pairs (#CN) as the main
metrics to assess physical plausibility and realism of the
scene. For visual and semantic evaluation, we report scores for
visual realism (Real.), functionality (Func.), layout correctness
(Lay.), and scene completeness (Comp.) as indicators of
visual quality and semantic coherence with the user query.
Following [2], [24], we use GPT-4 to assess these metrics,
providing it with top-down renderings of the generated scenes
and the user query as input.

A. Scene Generation for Common Room Types

We provide quantitative evaluation results for the living
room and bedroom in Tab. II. Results show that SCE-
NEWEAVER achieves state-of-the-art results across most met-
rics, outperforming both data-driven generative models and
open-vocabulary models. Notably, Holodeck slightly surpasses
SCENEWEAVER in the number of objects (#0b7j=32.2).
However, we argue that this is primarily due to the inclusion
of randomly placed objects, often lacking rationality in
object placement. Data-driven methods tend to generate

scenes with fewer objects, as their training datasets are
largely composed of large furniture items. Consequently, their
visual and semantic scores are also lower due to the limited
quality and diversity of the training dataset. Interestingly, we
observe that data-driven methods outperform LayoutGPT on
physical metrics, suggesting that relying solely on LLM-based
generation is insufficient for ensuring physical plausibility.
In contrast, our LLM-based agentic framework, empowered
by reflection and physics-based optimization, achieves zero
physical errors, which is comparable to pipelines that enforce
hard constraints during optimization (e.g., Holodeck). A
qualitative comparison of generated scenes is provided
in Fig. 4.

B. Open-vocabulary Scene Generation

We present quantitative evaluation results in Tab. III. The
results show that SCENEWEAVER significantly outperforms
existing open-vocabulary scene generation methods across
all eight tested room types. It achieves an average object
count of 36.5, notably higher than other approaches, and
also achieves significantly better visual and semantic scores.
More importantly, SCENEWEAVER accomplishes these im-
provements while strictly satisfying physical constraints (i.e.,
achieving zero collisions and out-of-boundary violations).
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Fig. 4: Qualitative comparison between SCENEWEAVER and existing methods on both synthesizing common room types and open-
vocabulary room types. SCENEWEAVER produces scenes with improved visual realism and finer-grained detail compared to prior methods.

This highlights the effectiveness of the reflective planner in
both improving semantic coherence with the user query, scene
diversity, and in fixing physical implausibilities in the iterative
refinement process. We provide qualitative comparisons
against other methods in Fig. 4 to further demonstrate the
superior visual realism and semantic coherence of scenes
generated by SCENEWEAVER. Overall, both quantitative and
qualitative metrics confirm that SCENEWEAVER consistently
outperforms existing methods on open-vocabulary scene
generation, highlighting the effectiveness of our reflective
agentic framework.

C. Additional Analyses

a) Ablation on Agent Design: We conduct an ab-
lation study on agent design by evaluating variants of
SCENEWEAVER on the average of three kitchen scenes
following the open-vocabulary scene generation setting.
Specifically, we consider the following variants: 1) removing
the reflection module (w/o Reflection), 2) removing the
physical optimization module (w/o Phys. Optim.), and 3)
replacing iterative reflection with a single-shot multi-step
planning (Multi-step Plan). As shown in Tab. IV, removing the
reflection module results in a notable drop in semantic quality,
while omitting physical optimization significantly harms
physical plausibility. Additionally, compared to the multi-step
planning variant, SCENEWEAVER achieves superior visual
and semantic performance. This highlights the importance of

iterative reflection, as single-pass planning often generates
globally inconsistent or locally infeasible layouts by failing
to account for context-dependent refinements.

b) Effectiveness of Tool Cards:  To evaluate the impact
of different tool types, we ablate the use of specific subsets
from our tool set during scene generation. As shown in Tab. V,
adding or removing particular tool types significantly affects
performance across all metrics, demonstrating the importance
of tool diversity and validating the design of our standardized
Specifically, we observe that modifier tools help align scenes
with functional requirements and improve layout coherence,
but may reduce object count (16.3 v.s. 23.0) and completeness
(5.0 v.s. 5.7) by removing redundant items. In contrast,
implementer tools excel at enriching scenes with appropriate
details, enhancing realism, functionality, and completeness.
The full combination of initializer, implementer, and modifier
tools yields the highest performance, highlighting the comple-
mentary strengths of diverse tools in achieving high-quality
3D scene synthesis.

¢) Iterative Refinement in SCENEWEAVER with Com-
plex Queries:  When presented with complex user instruc-
tions, SCENEWEAVER leverages iterative refinement to better
follow detailed requirements, particularly in object count,
small object placement, and overall scene layout. We provide
two qualitative examples of the iterative refinement procedure
in Fig. 5 to illustrate this capability.
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Fig. 5: Iterative refinement in SCENEWEAVER given complex user queries. SCENEWEAVER progressively incorporates detailed
elements specified in the user instruction, demonstrating its ability to iteratively refine and generate high-quality, instruction-aligned 3D

scenes (best viewed with zoom-in).
TABLE IV: Ablation on Agent Design.

TABLE V: Ablation on Effectiveness of Tools.

Method #0bj #0OB #CN Real.  Func. Lay.  Comp. Tools #0b3j Real.  Func. Lay.  Comp.

w/o Reflection 250 00 00 80 83 63 63 Init. 230 77 70 60 57
w/o Phys. Optim. 273 0.7 20 83 93 67 77 Init+Modifier 163 7.7 83 63 5.0
Multi-step Plan 293 00 00 83 7.7 7.0 173 Init+Implem. 343 80 83 63 73
Ours 347 00 00 90 93 73 77 Full 347 90 93 73 717

TABLE VI: Human Evaluation Results.

Method #0bj Real. Comp. Lay. Func.
LayoutGPT 594 6.60 6.74 590 6.34
I-Design 720 805 7.72 7.06 7.46
Holodeck  7.86 8.66 854 8.46 8.22
Ours 930 894 920 8.62 8.90

TABLE VII: Preference over other models by human.

Method w/ I-Design
85.0%

w/ Holodeck w/ LayoutGPT
82.5% 92.0%

Ours

d) Human Study: To further assess the quality of
scenes generated by SCENEWEAVER, we conduct a human
study with five participants. Each participant evaluates five
randomly selected scenes from the open-vocabulary scene
generation setting using physical, visual, and semantic metrics
following Sec. IV-B. As shown in Tab. VI, SCENEWEAVER
consistently outperforms baseline models across all dimen-
sions. Additionally, we conduct a pairwise comparison
study, where participants indicate their preference between
scenes generated by SCENEWEAVER and those from baseline
methods. Results in Tab. VII show that SCENEWEAVER is
preferred in nearly 85% of cases. These findings underscore
the strength of SCENEWEAVER in producing visually and

semantically coherent indoor scenes.

V. CONCLUSION

In this work, we present SCENEWEAVER, a reflective
and extensible agentic framework for 3D scene synthesis
that integrates diverse scene synthesis paradigms through
standardized tool interfaces and iterative feedback-driven
refinement. By adopting a reason—act-reflect paradigm, SCE-
NEWEAVER enables an LLM-based planner to dynamically
select and invoke appropriate tools, guided by multi-modal
self-evaluation of physical plausibility, visual realism, and
instruction alignment. This closed-loop design allows SCE-
NEWEAVER to effectively decompose and correct complex
generation tasks, achieving superior performance across
both common and open-vocabulary scene settings. Extensive
experiments and human evaluations validate the advantages
of our approach in producing high-quality, functionally
coherent, and semantically faithful 3D scenes. We believe
SCENEWEAVER represents a step toward general-purpose,
controllable 3D environment generation, with broad implica-
tions for Embodied Al, simulation, and interactive agents.
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APPENDIX I
DETAILS OF THE SCENEWEAVER FRAMEWORK

A. Scene Representation

As mentioned in method, the 3D scene at each step is
represented by a combination of 3D layout data and a 2D
rendering. The details are illustrated in Fig. Al. On the left,
we show a top-down rendering of the scene in Blender, which
helps align the visual representation with the coordinate-based
layout shown on the right. To enrich the spatial understanding,
we mark the image with X, Y, and Z coordinate axes at the
coordinate origin and 2D projection coordinates on (X,y)
plane to emphasize the spatial position. Each object is further
labeled with its 3D bounding box and semantic category to
assist the agent in object recognition. We also mark each
object with a 3D bounding box and its semantic label to help
agent recognize each object. Since visual language models
(VLMs) may struggle with spatial reasoning—particularly
object orientation—we additionally annotate each bounding
box with a directional arrow indicating the object’s front.
On the right side, the layout encodes each object’s semantic
category as the key, with its location, rotation, and size as
values. We also record relational information for each object,
including its parent object and the type of relationship.
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Fig. Al: Example Scene Representation. To convey both visual
and logical information of the current scene, we express the scene
data in two representations: 1) a top-down rendered image Z; (left)
with coordinate points, axies-arrow and objects’ 3D bounding boxes
with labels and and 2) the objects’ layout L (right)
including open-vocabulary category name, location, rotation, size
and relation between objects.

B. Self-reflective Planner

We provide the full prompt to the self-reflective planner
and feedback mechanism in Tabs. Al and A2.

C. Physics-aware Executor

Referring to Infinigen, the relation types here includes two
aspects.

1) Relation between the object and room:
e <against_wall>: the object’s back faces to the wall,
and stands very close or exactly on the wall.
e <side_against_wall>: the object’s side (left,
right, or front) faces to the wall, and stands very close.
e <on_floor>: the object stands on the ground.
2) Relation between two objects:

e <front_against>: the child object’s front faces to
the parent object, and stands very close, such as chair
and dining table.

e <front_to_front>: the child object’s front faces
to the parent object’s front, and stands very close, such
as chair and desk, coffee table and sofa.

e <leftright_to_leftright>: the child object’s
left or right faces to the parent object’s left or right,
and stands very close.

e <side_by_side>: the child object’s side (left, right
, or front) faces to the parent object’s side (left, right ,
or front), and stands very close.

e <back_to_back>: the child object’s back faces to
the parent object’s back, and stands very close.

e <on_top>: the child object is placed on the top of the
parent object, such as monitor and desk, vase and table.

e <inside>: the child object is placed inside the parent
object, such as book inside shelf.

D. Tool Cards
We provide detailed prompts to all tools in Tabs. A3—-A12.

APPENDIX IT
EXPERIMENTS

a) Additional Experimental Details: The maximum
number of steps is set to 10. However, the procedure may
terminate earlier if the intermediate results already meet
user requirements with a high score. The reflection module
determines whether to continue optimizing or stop.

For asset retrieval, we gather resources from available
tools when possible. For instance, when using tools based
on data-driven methods, we adopt 3D-FUTURE assets. If no
assets are provided, we first rely on the Infinigen generator to
produce standard assets following predefined rules. For more
open-vocabulary assets, we refer to OpenShape to retrieve
objects from Objaverse. In cases where assets lack a unified
initial pose, we calculate their minimum bounding rectangles
to identify four side candidates, then prompt GPT to annotate
the front-facing direction. GPT achieves a high success rate
in identifying the front side of commonly known objects,
though it may fail for more complex or ambiguous cases.

For the ablation study, we focus on the kitchen room type
and generate three scenes for each experimental setting.

b) Additional Results: = We show more visualization
results of SCENEWEAVER in Fig. A2. The results of restau-
rant, garage, and gym confirm that SCENEWEAVER is able
to arrange multiple objects neatly when the number of the
same category is more than three. Cabinet in the bathroom
contains objects inside, such as a roll of paper, since it has
supporting surface in the plane inside. Shelves are equipped
with related objects inside (basket in garage and towel in
gym). The third row shows some detailed results of complex
user queries.

¢) Simulation in Isaac Sim:  We export the generated
scenes as USD files and load them into Isaac Sim for physical
simulation and interactive tasks. Through Apple Vision Pro,
we remotely control a Unitree G1 humanoid robot to perform



Prompt for Planner

Task description: You are a scene designer, an expert agent in 3D scene generation and spatial optimization. Your
mission is to iteratively design and refine a scene to maximize its realism, accuracy, and controllability, while respecting
spatial logic and scene constraints.

Note: Given a user prompt, carefully inspect the current configuration and determine the best action to build or enhance
the scene structure. You should list all the effective optimization strategy for the next step based solely on geometry,
layout relationships, and functional arrangement. You must not focus on style, texture, or aesthetic appearance. To
achieve the best results, combine multiple methods over several iterations. Start with a foundational layout and refine it
progressively with finer details.

Available Tools: {metadata of available tools}

User demand: {user_demand}

Memory of step; 1:

o {planning ideas}

o {tool selection & execution results}
o {scene representation}

o {reflection score & suggestion}

Plan for step,:

Based on user needs and current status:
o Clearly explain the execution results of last step and tool.
o According to scene information and evaluation result, check if previous problems have been solved.
o According to evaluation result, which GPT score is the lowest? What physical problem does it have?
« Find the most serious problem to solve.

To solve the problem, list all the appropriate tools that can match the requirement for next step with 0-1 confidence
score:

¢ You should consider the suggestion from previous conversation to score each tool.
« If the same problem has not been solved by last step, you should consider degrade the score of the tool in the last
step.
o You should carefully check current scene, and you MUST obey the relation of each object. If there is no previous
step, init the scene.
o For complex tasks, you can break down the problem and use different tools step by step to solve it, but you only
choose and execute the suitable tool for this step.
o When multiple tools are applicable to solve the user’s request, list them with confidence score.
You must choose one tool for this step. Clearly explain the expectation and suggest the next steps. If there is no big
problem to address, or if only slight improvements can be made, or if further changes could worsen the scene, stop
making modifications.

TABLE Al: Prompt for planner.

object interactions within these virtual environments. As  visual and functional realism.
demonstrated in Fig. A3 and our supplementary video, the
system supports diverse interaction scenarios across multiple
scenes: the first three rows showcase interaction sequences

from a front-view perspective, while the last row provides

APPENDIX III
MISCELLANEOUS

a) Resources used:  All reported experiments are con-

a side-view analysis of the third scene. This pipeline offers
three key advantages for embodied Al applications: High-
fidelity simulation with preserved textures and geometric
details, Robust physical interactions guaranteed by collision-
free and boundary-constrained object placement, Task-aligned
scene layouts that adapt to diverse EAI requirements through
controllable synthesis. With the combination of these features,
we believe SCENEWEAVER enables reliable sim-to-real
transfer for robotic manipulation tasks while maintaining

ducted on a machine equipped with an NVIDIA GeForce
RTX 4090 GPU. To generate a scene, the time consumption
ranges from minutes to hours, depending on the iteration
number, chosen tools, and crowded status. We use Blender
3.6 to record and render the scene.

b) Limitations:  The time consumption is a bit longer
due to several reasons. First, different method takes different
time. For example, the data-driven tool is fast, since the
process is simple and the model is trained in advance. While



Prompt for Verifier

Task You are given a top-down room render image and the corresponding layout of each object. Your task is to evaluate
how well they align with the user’s preferences across the four criteria listed below. For each criterion, assign a score
from O to 10, and provide a brief justification for your rating. Scoring must be strict. If any critical issue is found (such
as missing key objects, obvious layout errors, or unrealistic elements), the score should be significantly lowered, even if
other aspects are fine.
Score Guidelines

e Score 10: Fully meets or exceeds expectations; no major improvements needed.

o Score 5: Partially meets expectations; some obvious flaws exist that limit usefulness.

o Score 0: Completely fails to meet expectations; the aspect is absent, wrong, or contradicts user needs.
Evaluation Criteria

1) Realism: How realistic the room appears. Ignore texture, lighting, and doors.

o Good (8-10): The layout (position, rotation, and size) is believable, and common daily objects make the room
feel lived-in. Rich of daily furniture and objects.

« Bad (0-3): Unusual objects or strange placements make the room unrealistic.

« Note: If object types or combinations defy real-world logic (e.g., bathtubs in bedrooms), score should be below 5.

2) Functionality: How well the room supports the intended activities.

e Good (8-10): Contains the necessary furniture and setup for the specified function.

« Bad (0-3): Missing key objects or contains mismatched furniture (e.g., no bed in a bedroom).

« Note: Even one missing critical item should lower the score below 6.

3) Layout: Whether the furniture is arranged logically in good pose and aligns with the user’s preferences.

« Good (8-10): Each objects is in reasonable size, neatly placed, objects of the same category are well aglined,
relationships are reasonable (e.g., chairs face desks), sufficient space exists for walking, and orientations must be
correct.

« Bad (0-3): Floating objects, crowded floor, abnormal size, objects with collision, incorrect orientation, or large
items placed oddly (e.g., sofa not against the wall). Large empty space. Blocker in front of furniture.

« Note: If the room has layout issues that affect use, it should not score above 5.

4) Completion: How complete and finished the room feels.

o Good (8-10):All necessary large and small items are present. Has rich details. Each shelf has multiple objects
inside. Each supporter (e.g. table, desk, and shelf) has small objects on it. Empty area is less than 50%. The
room feels done.

« Bad (0-3): Room is sparse or empty, lacks decor or key elements.

e Note: If more than 50% of the room is blank or lack detail, score under 5.

User demand {user_demand} Rendered Image{rendered_image 7;} Room layout{layout £, }
Results Return the results in the following JSON format, the comment should be short:

{

"realism": {
"grade": your grade as int,
"comment": "Your comment and suggestion."

}I

"functionality": {...},

"layout": {...},

"completion": {...}

}
N J

TABLE A2: Prompt for Verifier.

the 2D guided tool, such as ACDC, is slower, since the
process is complex and included several procedures including
2D segmentation, 3D reconstruction, assets matching, and
pose optimization. Another reason is that we add physical
optimization in the executor to ensure the physical plausibility
in the geometric level, while previous work only consider

the bounding box level. The third reason is because we take
several steps to develop a scene rather than a single step.

¢) Broader Impact: = Our work focuses on 3D scene
synthesis, aiming to generate physically interactable environ-
ments based on complex, user-specific instructions. A key
application lies in the development of embodied artificial



A garage with a car in the center. Add a work
bench and shelf with related tools.

A laundromat with 10 machines. Add washing

supplies on each machine. Add other related

Design me a bathroom.

A bedroom rich of furniture, decoration
on the wall, and small objects.

objects, such as baskets, and washthub in the

room.

Fig. A2: More visualization example of generated scenes.

intelligence, where such synthesized scenes can be used to
train agents across diverse tasks. Furthermore, the overall
architecture of SCENEWEAVER is grounded in recent LLM-
based tool-use agent frameworks, positioning it to inspire
future agentic systems tailored to specific use cases. This
includes the design of task-specialized components such
as system prompts and interaction protocols for enhanced
application-specific performance. At present, we do not
anticipate any immediate negative societal impacts resulting
from SCENEWEAVER.

d) User Study:  We invited five participants to evaluate
the quality of scenes generated by SCENEWEAVER. All
participants were volunteers without compensation. We invite
them to assess the scenes in two settings.

In the first setting, we randomly collected 100 scenes
generated by three baseline methods and SCENEWEAVER.
Each volunteer was randomly assigned 20 scenes along with
their corresponding prompts. Participants were asked to rate
each scene on a scale from 1 to 10 using the same five metrics
described in the experiment. Note that physical metrics such

as collision count (#CN) and out-of-boundary objects (#0B)
were excluded from this human evaluation, as they are difficult
to assess by eye. For each of the five remaining metrics,
we provided a guiding sentence to help participants make
consistent and informed judgments. Finally, we aggregated
the ratings from all participants and computed the average
score for each metric.

In the second setting, we conducted a pairwise comparison
study, shown in Fig. AS5. For each baseline method, we se-
lected five pairs of scenes—one generated by SCENEWEAVER
and the other by the baseline method under the same prompt.
Participants were asked to choose the better scene in each
pair based on overall quality. We collected votes from all
participants and calculated the average preference between
SCENEWEAVER and each baseline method.



Fig. A3: Robot interacts with the scene generated by SCENEWEAVER in simulation. The first three rows show the sequences of
interaction in the front view in three different scenes including kitchen, meeting room and restaurant. And the last row shows the side view
of the third row. Note the system keeps different materials, such as table in the meeting room has transparent and reflective material.
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Fig. A4: Example of user study in the first setting.

Here are two indoor scene images generated from the same prompt. Which one
do you think is better?

Prompt: Design me a bedroom.

O Left is better

O Right is better

Fig. A5: Example of user study in the second setting.



Initializer: Real2Sim - MetaScene: Metadata

Description Load the most related scene from the Real2Sim indoor scene dataset MetaScenes as the basic scene. Ideal
for generating foundational layouts for common room types.

Supported Room Types: living room, dining room, bedroom, bathroom, kitchen, hotel, office, laundry room, and
classroom. Use Case 1 Create a foundational layout.

Strengths Provides a ready-made layout based on real-world data. Rich of details. Weaknesses Fixed layout, need to
modify with other methods to meet user demand.

Input Roomtype, Ideas to init the scene.

TABLE A3: Metadata of Initializer: Real2Sim - MetaScene.

Initializer: Model - PhyScene: Metadata

Description Using PhyScene, a neural network, to generate a scene as the basic scene. The model is trained on the 3D
Front indoor dataset.

Supported Room Types Living room, bedroom, and dining room. Use Case 1 Create a foundational layout.
Strengths Room is clean and tidy. Assets in good quality. Weaknesses Fixed layout with less details. Input Roomtype,
Ideas to init the scene.

TABLE A4: Metadata of Initializer: Model - PhyScene.

Initializer: LLM - GPT: Metadata

Description Using GPT to generate the foundamental scene.
Supported Room Types any room type. Use Case 1 Create an accurate and foundational layout.

Strengths Align well with user demand. More details. Highly versatile and capable of generating scenes for any room
type and complex user requirement. Flexible with respect to room design and customization. Weaknesses Less spatial
rationality. May not be as real as data-driven and Real2Sim methods. Input Roomtype, Ideas to init the scene.

TABLE AS5: Metadata of Initializer: LLM - GPT.

Implementer: 2D Guided - ACDC: Metadata

Description Using image generation and 3D reconstruction to add additional objects into the current scene.
Use Case 1 Add a group of small objects on the top of an empty and large furniture, such as a table, cabinet, and desk
when there is nothing on its top.
Strengths Real. Excellent for adding a group of objects with inter-relations on the top of a large furniture.(e.g., enriching
a tabletop), such as adding (laptop,mouse.keyboard) set on the desk and (plate,spoon,food) set on the dining table.
Accurate in rotation. Weaknesses Can not add objects on the wall, ground, or ceiling. Can not add objects inside a
container, such as objects in the shelf. Can not add objects when there is already something on the top. Input Ideas to
add objects.

\

TABLE A6: Metadata of Implementer: 2D Guided - ACDC.

Implementer: Implementer: LLM - GPT: Metadata

Description Using GPT to add additional objects into the current scene.

Use Case 1 Add large objects in the current scene. Use Case 2 Add 1-2 small objects on the top of small supporting
furniture, such as nightstand and cabinet, when there is enough space. (e.g., add a cup on the nightstand). Use Case 3
Add several small objects on the top of large supporting furniture, such as dining table and desk, when there is enough
space. (e.g., add daily tableware on the dining table). Use Case 4 Add several small objects inside the large furniture.
(e.g., add books in the shelf). Use Case 5 Add functional objects or decorations on the wall. (e.g., add painting, mirror,
and TV on the wall).

Strengths The location is accurate. Can add objects inside a container, such as objects in the shelf. Weaknesses The
rotation of asset is not always accurate. Relation between small objects is not clear. Can not modify objects in the

current scene. Can not add objects on the ceiling. Input Ideas to add objects.
N J

TABLE A7: Metadata of Implementer: LLM - GPT.




Refiner: LLM - Remove Object: Metadata

DescriptionRemove objects with GPT. Works with all room types.

Use Case 1 Remove redundant and unnecessary objects when the scene is crowded or when there are too many objects.
(e.g., eliminate a table in the corner) Use Case 2 Remove objects that does not belongs to this roomtype. (e.g., eliminate
the bed in the dining room) Use Case 3 Remove objects when the collision/outside problem has not been solved for
several attempts by other tools. (e.g., eliminate the object outside the room) Use Case 4 Remove small objects (usually
with collision or outside the supporting surface) when their supporter or container has no enough space to support them.
(e.g., eliminate some small objects or when the nightstand is overloaded)

Strengths Excels at removing specific objects. Can solve collison and crowded problems directly. Weaknesses Can not
add objects or replace objects. You must use this method carefully to avoid mistaken deletion. Input Ideas to remove
objects.

&

-

TABLE AS8: Metadata of Refiner: LLM - Remove Object.

Refiner: LLM&Rule - Add Relation: Metadata

DescriptionAdd explicit relation between objects in the current scene according to the layout. Sometimes the relation is
encoded in the layout coordinate rather than represented explicitly, making it difficult to manage. Explicit relations will
make the scene more tidy.

Note: Each object can have only one parent object (except for the room). Do not add relation between small objects.
The optional relations between objects are {relation_types}.

Use Case 1 Add explicit relation between large objects, according to the layout, to make the scene better-organized. Use
Case 2 Add new relation between large objects, make the scene better-organized. Use Case 3 Add againts_wall relation
to large objects, make the objects stand against wall. Use Case 4 Add floating small objects on/in a large object.
Strengths Can add relation between objects, make the scene tidy and well-organized quickly. Weaknesses Can not fix
the layout problem, such as placing the object into the right place accurately. Input Ideas to add relation.

-

TABLE A9: Metadata of Refiner: LLM&Rule - Add Relation. The relation types are introduced in Sec. I-C.

Refiner: VLM - Update Rotation: Metadata

e) Description:  Adjust object rotations with GPT to optimize room layout.

Use Case 1 Fix incorrect object orientations, such as a bed facing the wall or a chair turned away from a desk. Use
Case 2 Improve spatial organization by aligning objects more naturally with the room structure or usage context (e.g.,
rotate a sofa to face a TV or a chair to face a table).

Strengths Helps improve the visual and functional coherence of a room. Can automatically identify misaligned items
and suggest better orientations based on typical room usage. Weaknesses Does not move, add, or remove objects. Only
focus on rotation. Input Ideas to update rotation.

-
o

TABLE A10: Metadata of Refiner: VLM - Update Rotation.

Refiner: LLM - Update Size: Metadata

Description Modify Object Sizes with GPT. Best suited for significant size adjustments rather than minor refinements.
Use Case 1 Resizing objects with abnormal proportions (e.g., an object on a table that is over one meter tall). Use Case

2 Scaling objects to meet functional requirements (e.g., enlarging a table when a larger one is needed).
Strengths Effective at adjusting specific object sizes. Weaknesses Cannot modify overall room dimensions. Should only
be used when necessary due to potential scene inconsistencies. Input Ideas to update size.

TABLE Al1: Metadata of Refiner: LLM - Update Size.



Refiner: LLM - Update Layout: Metadata

DescriptionModify layout with GPT.

Use Case 1 Adjust objects’ placement when the objects are not well-placed. Use Case 2 Change objects’ scale when
the size does not match the requirement.

Strengths Excels at modifying specific objects. This method is not recommended for slight layout adjustments. It is
better suited for major changes when necessary. Weaknesses Can not solve all the problem when the room is crowded.
Poor in modify rotation. May lack precision and occasionally overlook details. Can not obey the current relation, such

as move object away from the wall when the object is against wall. Can not add objects. Input Ideas to update layout.
N J
TABLE A12: Metadata of Refiner: LLM - Update Layout.




